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Supporting Information: Velocity Profile Shape Factors for Core-Annular Flow (CAF) 

One dimensional Two-Fluid models which are used to model transient and undeveloped annular flows require 

introducing correction factors on the inertia terms, which are expressed in terms of the average phase velocity. 

These are denoted as the velocity profile 'shape factors', and their definition evolve from the averaging of the 

phase's inertia over the flow cross section. Accordingly, the shape factors are defined by:  

The above area-averaged shape-factor for the annular phase is obtained by:  
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Horizontal flows:  

In in 1D (Two-Fluid, TF) models the flows of the annular and core phases are represented in terms of the 

holdup and average velocity. The velocity profile shape factors represent the corrections to be introduced on 

the inertia terms the TF model is used to simulate transient or undeveloped CAFs. As the velocity profiles are 

not resolved in the framework of 1-D Two-Fluid models, plug flow is usually assumed in both phases. The 

velocity profiles obtained by the exact solutions can be used to test the validity of the plug flow assumption 

and to calculate the velocity profile shape factors that should be introduced in the Two-Fluid models in order 

to correctly represent the phases' inertia.  

The effects of the core eccentricity and viscosity ratio on the velocity profile shape factors of the core and 

annular phases in horizontal CAF (Y=0) are demonstrated in Figures (S1) and (S2). In horizontal flow the 

velocity profiles and the shape factors are not affected by the phases’ density ratio, and the reference to the 

density of the phases is maintained in the notation only for the sake of consistency with previous results.   

Figures (S1a,b) are for the case of  μa/μc =μH/μL =0.1, where the less viscous (heavy) phase flows in the annulus, 

while the viscous (light) phase flows in the core. As seen in Figure (S1a), in the limit of concentric CAF, the 

shape factor value of the annular phase is 4 / 3
a

   independently of the holdup and of the viscosity ratio. See 

Eq. (35.1) and Figure (S2a). Obviously, also in the limit of 1
a

   , the value of 4 / 3
a

   (which corresponds 

to single-phase Pouisille flow) is reached independently of the core eccentricity and viscosity.  However, in 

the limit of 0
a

  ,  as  well as for moderate holdups of the annular phase, the value of the shape factor is 

sensitive to the core eccentricity, in particular in the range of low core eccentricities. Figure (S2a) shows that 

the sensitivity of a
  to deviations from concentric CAF configurations (nonzero E) becomes even more 

pronounced for 1   (the annular phase is more viscous), and persist over a wider range of holdups. For high 

core eccentricities, say E>0.7, the shape factor values become similar to those obtained with fully eccentric 

CAF model.  
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Figure (S1b) shows the shape of the phase factor in the core, c
  for the case of   =0.1. As expected, for low 

holdups of the annular phase, c
 is insensitive to the core eccentricity and its variations with the holdup and 

with the viscosity ratio (see Figure (S2b)) follow those obtained with concentric CAF (see Eq. (35.2)). The 

insensitivity of c
 to the core eccentricity extends over a wider range of holdups for 1   . In the other limit 

of 1
a

   (i.e., the core phase vanishes) and 1
c

  independently of the core eccentricity and viscosity ratio. 

As implied by Figure (S2b),  for 1   , i.e.,    , 4 / 3
c

  practically for the whole range of holdups 

(except when the core vanishes, where 1
c

   . This is obviously expected, since the case of     

corresponds to single phase Pouisille flow of the core phase through a (concentric or eccentric) cavity. 

  

Inclined flows:  

While in horizontal flow the shape factor are practically bounded, 1 , 1.5
c a

   , this is not the case in inclined 

flows, where the shape factors can attain very large values. The large values correspond to conditions of 

backflow, where part of the fluid is flowing opposite to the superficial velocity direction. Hence, backflow 

refers to downward flow in the heavy phase near the wall in concurrent up-flow, or upward flow of the heavy 

phase near the interface in countercurrent flow. Similarly, backflow of the light phase refers to its upward flow 

near the upper wall in concurrent downward flow, or down flow of the light phase near the interface in 

countercurrent flow. 

The effect of the core eccentricity on the shape factors of the phases in inclined CAF is demonstrated in Figure 

S3. This figure corresponds to the case were the annular phase is heavier and less viscous, μa/μc =μH/μL =0.1. 

The constant inclination parameter (Y=-5) is scaled with the superficial frictional pressure gradient of the light 

(core) phase. As shown in Figure (S3a), the gravity has a pronounced effect on the shape factor of the heavier 

phase. The escalation of the heavy phase shape factors takes place both in concurrent and countercurrent flows 

while approaching X2=0 (with non-zero holdup), where the velocity profile corresponds to recirculating flow. 

At X2=0 the nonzero middle and highest holdup solutions (see Figure 5 in the paper), a
   . The general 

trends of the variation of the shape factors of the heavy and light phase are exhibited by the case of concentric 

CAF (E=0), that can be easily calculated by applying the analytical expressions (Eqs. 36-37). However, the 

effect of the core eccentricity on the shape factor of the heavy (annular) phase (Figure S3a) can be pronounced, 

in particular for E>0.3, and is non-monotonous in the countercurrent region. As expected, the shape factor of 

the core (light) phase is less sensitive to the core eccentricity (Figure S3b). The core eccentricity effect becomes 

pronounced at steeper inclinations, in particular in the countercurrent flow region (Figure S3c).   

Increasing the viscosity of the heavy phase reduces the effect of gravity suppresses the backflow in the heavy 

phase (near the wall) in concurrent up-flow and reduces the countercurrents flow region. Consequently, as 

shown in the Figure (S4a) the shape factors of the heavy phase are reduced and become similar to those 

obtained in horizontal flow. Also, the effect of the eccentricity becomes less pronounced with increasing the 

annular (heavy) phase viscosity. Figure (S4b) shows that in the concurrent up-flow region, the values of the 

shape factors of the core (light) phase ranges between 1 to 4/3, similarly to the values obtained in horizontal 
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CAF, and the values increase with reducing the core viscosity (increasing  ). Yet, as shown in Figure (S3c), 

much higher values are obtained for L
  at steeper inclinations , however only in the countercurrent region, 

where also the effect of core eccentricity becomes more pronounced. 

Figure (S5a,b) show the effect of the core eccentricity on the shape factors in case the less viscous heavy phase 

flows in the core. In fact, this is the reversed case of Figure (S3). Here too, the Y=-5 is scaled with the superficial 

frictional pressure gradient of the light (annular) phase. In general, the trends of the heavy phase shape factors 

appear similar to those shown in Figure (S3). However, the countercurrent region is shifted to lower holdups, 

and the effect of the core eccentricity on the shape factor values is monotonic: The shape factor of the heavy 

core phase increases with reducing the core eccentricity, whereby the core phase is less affected by the presence 

of the wall. It is interesting to note that in the concurrent up-flow region; values of the shape factor very close 

to 1 are obtained, indicating that the velocity profile is almost flat, due to the opposite effects of the shear and 

gravity on the velocity profile of the core phase. The effect of the core eccentricity on the shape factor of the 

annular phase is monotonous, whereby increasing values obtained at higher eccentricities (with the exception 

of E→1 where the less viscous core touches the wall).  

In experimental studies only the velocity profile along the pipe centerline is measured and is often used to 

deduce the velocity profile shape factor. The center-line shape factors when defined with respect to the inertia 

of the area-averaged velocity are given by:  
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The center-line shape factors, when defined with respect to the inertia of the center-line average velocity, are 

obtained by:  
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In the limit of E→0, using the closed-form analytical solution for the velocity profiles of the core and annular 

phases (Eqs. 18) in Eqs.(34) yields a closed from expressions for the shape factors of the core and annular 

phases:  

 

  

 

Fig. S1: Effect of the annular (heavy) phase holdup and core eccentricity on the velocity-profile shape factors 

for the case of horizontal CAF flow with   =0.1. The less viscous (heavy) phase flows in the annulus (a) 

Shape factor of the annular phase, (b) shape factor of the core (viscous, light) phase. 
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Fig. S2: Effect of the annular (heavy) phase holdup, core eccentricity and viscosity ratio on the velocity-profile 

shape factors for the case of horizontal CAF flow with various viscosity ratios.  (a) shape factor of the annular 

(heavy) phase (b) shape factor of the core (light) phase. 
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Fig. S3: The effect of the holdup and core eccentricity on the shape facotrs in case the annular phase is heavier 

and less viscous. (a) annular phase, Y=-5  (b) core phase, Y=-5. (c) core phase- effect of Y.  
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Fig. S4: The effect of the holdup and visocisty ratio on the shape facotrs of the annular (a) and core (b) phases, 

in inclined flow, Y=-5,  where the annular phase is heavier. 

  

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 a


 
H

  
  

Holdup

Y=-5

CAF A=H

0.1
1

10

a/cH/L

0.1

E=0

E=0.7

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 c


 
L

  
  

Holdup

Y=-5

CAF A=H

0.1

1

10

A/CH/L

E=0

E=0.7

(a) 

(b) 



 

 

8 

 

 

 

Fig. S5: The effect of the holdup and core eccentricity on the shape facotrs of the core (a) and annular (b) 

phases, in case the annular phase is lighter and less viscous.  
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Supporting Information: Cartesian and Bipolar Coordinates for Core-Annular Flow 

 

Referring to Figure 1, where the origin (x,y=0,0) is set in the pipe center and considering a transformation 

z -plane z x iy   to a -plane, i    , where  , ,x y z  denote dimensionless scale (normalized by 

R):  

ln
w

w

z ie

z ie


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
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Accordingly,  are given by:  

 cosh cosh cossinh sin
    ;    y=

cosh cos cosh cos

w wwx
    
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 
 

 
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The polar coordinate,  is therefore given by:  
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2sinh sinh
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cosh cos

w w
r
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 , ;x x    ,y y  

/r r R
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Figure A.1:  Geometrical variables used to define distances along the interface and the wall in the CAF 

model. 

 

Using Eq. (A.3), a point on the interface corresponds to c   (see Figure A.1) where:  
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The ( , ), ( , )c c c w c ce R e R   are determined Eq. (4) and  1c ce E R  . Accordingly, a point on the core interface 

corresponds to:  

 

 
 *

1 1
cosh cosh cos1

cos cos 1
cosh cos

c w w
i c

cc c

e y
E R

R R

   


 

 
  

    
  

   (A.6) 

 



 

 

11 

The distance along the core interface (measured from the point on the pipe meridian which is the farer 

from the pipe wall) is then given by:  
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i c c c
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For    , Eq. (A.7) yields the expected result, / 2i cs R .    

 

The distance along the pipe wall (measured from the point on the pipe meridian which is the farer from 

the core interface) is then given by:  

1 1 1 cosh cos1
cos cos

2 cosh cos

w
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s y
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As expected, for    , Eq. (A.8) yields  / 2ws   .      

 

For fully eccentric core, the uni-polar coordinate has been used, where:  
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A point on the core interface corresponds to 1 1/c cR   , where its y coordinate is :  

*

2 2
2

2 c

c

y
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
          (A.10)  

Accordingly, a point on the core interface corresponds to (see Figure (A.2)) :  
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Figure A.6: Geometrical variables used to define distances along the interface and the wall in the FE CAF 

model.  
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The distance along the core interface (measured from the point on the pipe meridian which is the farer from 

the pipe wall) is then given by: (A.10)  
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At the TP, where 2   , / 2i cs R , and  2
22 1wy   .      

The distance along the pipe wall (measured from the point on the pipe meridian which is the farer from the 

core interface) is then given by w :  
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As expected, at the TP, where 2   ,  / 2ws  . 

 

 


